Kernel Density Estimation with Ripley’s Circumferential Correction
نویسندگان
چکیده
منابع مشابه
Comparison of the Gamma kernel and the orthogonal series methods of density estimation
The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...
متن کاملSimple boundary correction for kernel density estimation
If a probability density function has bounded support, kernel density estimates often overspill the boundaries and are consequently especially biased at and near these edges. In this paper, we consider the alleviation of this boundary problem. A simple unified framework is provided which covers a number of straightforward methods and allows for their comparison: 'generalized jackknifing' genera...
متن کاملNonparametric multiplicative bias correction for kernel-type density estimation on the unit interval
We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide k...
متن کاملOn Boundary Correction in Kernel Density Estimation
It is well known now that kernel density estimators are not consistent when estimating a density near the finite end points of the support of the density to be estimated. This is due to boundary effects that occur in nonparametric curve estimation problems. A number of proposals have been made in the kernel density estimation context with some success. As of yet there appears to be no single do...
متن کاملKERNEL DENSITY ESTIMATION ON EMBEDDED MANIFOLDS WITH BOUNDARY By
We consider practical density estimation from large data sets sampled on manifolds embedded in Euclidean space. Existing density estimators on manifolds typically require prior knowledge of the geometry of the manifold, and all density estimation on embedded manifolds is restricted to compact manifolds without boundary. First, motivated by recent developments in kernel-based manifold learning, ...
متن کامل